
BUGSJS: A Benchmark of JavaScript Bugs
Péter Gyimesi∗, Béla Vancsics∗, Andrea Stocco†, Davood Mazinanian†,

Árpád Beszédes∗, Rudolf Ferenc∗ and Ali Mesbah†

∗University of Szeged, Hungary
{pgyimesi, vancsics, beszedes, ferenc}@inf.u-szeged.hu

†University of British Columbia, Canada
{astocco, dmazinanian, amesbah}@ece.ubc.ca

Abstract—JavaScript is a popular programming language that
is also error-prone due to its asynchronous, dynamic, and
loosely-typed nature. In recent years, numerous techniques have
been proposed for analyzing and testing JavaScript applications.
However, our survey of the literature in this area revealed
that the proposed techniques are often evaluated on different
datasets of programs and bugs. The lack of a commonly used
benchmark limits the ability to perform fair and unbiased
comparisons for assessing the efficacy of new techniques. To
fill this gap, we propose BUGSJS, a benchmark of 453 real,
manually validated JavaScript bugs from 10 popular JavaScript
server-side programs, comprising 444k LOC in total. Each bug
is accompanied by its bug report, the test cases that detect
it, as well as the patch that fixes it. BUGSJS features a rich
interface for accessing the faulty and fixed versions of the
programs and executing the corresponding test cases, which
facilitates conducting highly-reproducible empirical studies and
comparisons of JavaScript analysis and testing tools.

I. INTRODUCTION

JavaScript (JS) is the de-facto web programming lan-
guage globally1, and the most adopted language on GitHub2.
JavaScript is massively used in the client-side of web applica-
tions to achieve high responsiveness and user friendliness. In
recent years, due to its flexibility and effectiveness, it has been
increasingly adopted also for server-side development, leading
to full-stack web applications [1]. Platforms such as Node.js3

allow developers to conveniently develop both the front- and
back-end of the applications entirely in JavaScript.

Despite its popularity, the intrinsic characteristics of
JavaScript—such as weak typing, prototypal inheritance, and
run-time evaluation—make it one of the most error-prone
programming languages. As such, a large body of software
engineering research has focused on the analysis and testing
of JavaScript web applications [2, 3, 4, 5, 6, 7, 8, 9].

Existing research techniques are typically evaluated through
empirical methods (e.g., controlled experiments), which need
software-related artifacts, such as source code, test suites, and
descriptive bug reports. To date, however, most of the empir-
ical works and tools for JavaScript have been evaluated on
different datasets of subjects. Additionally, subject programs
or accompanying experimental data are rarely made available

1https://insights.stackoverflow.com/survey/2018
2https://octoverse.github.com
3https://nodejs.org/en/

in a detailed, descriptive, curated, and coherent manner. This
not only hampers the reproducibility of the studies themselves,
but also makes it difficult for researchers to assess the state-of-
the-art of related research and to compare existing solutions.

Specifically, testing techniques are typically evaluated with
respect to their effectiveness at detecting faults in existing
programs. However, real bugs are hard to isolate, reproduce
and characterize. Therefore, the common practice relies on
manually-seeded faults, or mutation testing [10]. Each of
these solutions has limitations. Manually-injected faults can
be biased toward researchers’ expectations, undermining the
representativeness of the studies that use them. Mutation
techniques, on the other hand, allow generating a large number
of “artificial” faults. Although research has shown that mutants
are quite representative of real bugs [11, 12, 13], mutation
testing is computationally expensive to use in practice. For
these reasons, a benchmark of manually validated bugs can be
of paramount importance for devising novel debugging, fault
localization, or program repair approaches.

Several benchmarks of bugs have been proposed and
largely utilized by researchers to advance testing re-
search. Notable instances are the Software-artifact Infras-
tructure Repository [14], Defects4J [15], ManyBugs [16],
and BugSwarm [17]. Purpose-specific test and bug datasets
also exist to support studies in program repair [18], test
generation [19], and security [20]. However, to date, a well-
organized repository of labeled JavaScript bugs is still missing.
The plethora of different JavaScript implementations available
(e.g., V8, JavaScriptCore, Rhino) further makes devising a
cohesive bugs benchmark nontrivial.

In this paper, we present BUGSJS, a benchmark of
453 JavaScript-related bugs from 10 open-source JavaScript
projects, based on Node.js and the Mocha testing framework.
BUGSJS features an infrastructure containing detailed reports
about each bug, the faulty versions of programs, the test cases
exposing them, as well as the patches that fix them.

Particularly, this paper makes the following contributions:
• A survey of the previous work on analysis and testing of

JavaScript applications, revealing the lack of a compre-
hensive benchmark of JavaScript programs and bugs to
support empirical evaluation of the proposed techniques.

• BUGSJS, a benchmark of 453 manually selected and
validated JavaScript bugs from 10 JavaScript Node.js

https://insights.stackoverflow.com/survey/2018
https://octoverse.github.com
https://nodejs.org/en/


programs pertaining to the Mocha testing framework.
BUGSJS features a Docker-based infrastructure to down-
load, analyze, and run test cases exposing each bug and
the corresponding real fixes implemented by developers.

• A quantitative and qualitative analysis of the bugs in-
cluded in BUGSJS, illustrating their generalizability to
existing taxonomies of faults and fixes.

II. STUDIES ON JAVASCRIPT ANALYSIS AND TESTING

To motivate the need for a novel benchmark for JavaScript
bugs, we surveyed the works related to software analysis and
testing in the JavaScript domain. Our review of the literature
also allowed us to gain insights about the most active research
areas in which our benchmark should aim to be useful.

In the JavaScript domain, the term benchmark commonly
refers to collections of programs used to measure and test
the performance of web browsers with respect to the latest
JavaScript features and engines. Instances of such performance
benchmarks are JetStream,4 Kraken,5 Dromaeo,6 Octane,7

and V8.8 In this work, however, we refer to benchmark as
a collection of JavaScript programs and artifacts (e.g., test
cases or bug reports) used to support empirical studies (e.g.,
controlled experiments or user studies) related to one or more
research areas in software analysis and testing.

We used the databases of scientific academic publishers and
popular search engines to look for papers related to different
software analysis and testing topics for JavaScript. We adopted
various combinations of keywords: JavaScript, testing

(including code coverage measurement, mutation testing, test
generation, unit testing, test automation, regression testing),
bugs and debugging (including fault localization, bug and
error classification), and web. We also performed a lightweight
forward and backward snowballing to mitigate the risk of
omitting relevant literature.

Last, we examined the evaluation section of each paper.
We retained only papers in which real-world, open-source
JavaScript projects were used, whose repositories and versions
could be clearly identified. This yielded 25 final papers. Nine
(9) of these studies are related to bugs, in which 670 subjects
were used in total. The remaining 16 papers are related to
other testing fields, comprising 494 subjects in total.

In presenting the results of our survey of the literature,
we distinguish (1) studies containing specific bug information
and other artifacts (such as source code and test cases) and
(2) studies containing only JavaScript programs and other
artifacts not necessarily related to bugs.

A. Bug-related Studies for JavaScript

We analyzed papers using JavaScript systems that include
bug data in greater detail, because these works can provide
us important insights about the kind of analysis researchers

4https://browserbench.org/JetStream
5https://wiki.mozilla.org/Kraken
6https://wiki.mozilla.org/Dromaeo
7https://developers.google.com/octane
8https://github.com/hakobera/node-v8-benchmark-suite

used the subjects for, and thus, the requirements that a new
benchmark of bugs should adhere to.

We found nine studies in this category, which we overview
next. Ocariza et al. [5] present an analysis and classification
of bug reports to understand the root causes of client-side
JavaScript faults. This study includes 502 bugs from 19
projects with over 2M LOC. Another bug classification pre-
sented by Gao et al. [21] focuses on type system-related issues
in JavaScript, which includes about 400 bug reports from 398
projects with over 7M LOC. Hanam et al. [22] present a study
of cross-project bug patterns in server-side JavaScript code,
using 134 Node.js projects of about 2.5M LOC.

Ocariza et al. [23] propose an inconsistency detection
technique for MVC-based JavaScript applications which is
evaluated on 18 bugs from 12 web applications (7k LOC).
A related work [24] uses 15 bugs in 20 applications (nearly
1M LOC). They also present an automated technique to
localize JavaScript faults based on a combination of dynamic
analysis, tracing, and backward slicing, which is evaluated on
20 bugs from 15 projects (14k LOC) [25]. Also, their tech-
nique for suggesting repairs for DOM-based JavaScript faults
is evaluated on 22 bugs from 11 applications (1M LOC) [26].

Wang et al. [4] present a study on 57 concurrency bugs
in 53 Node.js applications (about 3.5M LOC). The paper
proposes several different analyses pertaining to the retrieved
bugs, such as bug patterns, root causes, and repair strategies.
Davis et al. [27] propose a fuzzing technique for identifying
concurrency bugs in server-side event-driven programs, and
evaluate their technique on 12 real world programs (around
216k LOC) and 12 manually selected bugs.

B. Other Analysis and Testing Studies for JavaScript

Empirical studies in software analysis and testing benefit
from a large variety of software artifacts other than bugs, such
as test cases, documentation, or code revision history. In this
section, we briefly describe the remaining papers of our survey.

Milani Fard and Mesbah [28] characterize JavaScript tests
in 373 JavaScript projects according to various metrics, e.g.,
code coverage, test commits ratio, and number of assertions.

Mirshokraie et al. propose several approaches to JavaScript
automated testing. This includes an automated regression test-
ing based on dynamic analysis, which is evaluated on nine web
applications [29]. The authors also propose a mutation testing
approach, which is evaluated on seven subjects [30], and on
eight applications in a related work [31]. They also propose a
technique to aid test generation based on program slicing [32],
where unit-level assertions are automatically generated for
testing JavaScript functions. Seven open-source JavaScript
applications are used to evaluate their technique. The authors
also present a related approach for JavaScript unit test case
generation, which is evaluated on 13 applications [33].

Adamsen et al. [34] present a hybrid static/dynamic program
analysis method to check code coverage-based properties of
test suites from 27 programs. Dynamic symbolic execution
is used by Milani Fard et al. [35] to generate DOM-based
test fixtures and inputs for unit testing JavaScript functions,

https://browserbench.org/JetStream
https://wiki.mozilla.org/Kraken
https://wiki.mozilla.org/Dromaeo
https://developers.google.com/octane
https://github.com/hakobera/node-v8-benchmark-suite


TABLE I: Subject distribution among surveyed papers

BUG-RELATED ALL STUDIES

# Papers # Subjects # Papers # Subjects

1 607 1 910
2 17 2 91
3 7 3 17
4 2 4 4
5 0 5 1

and four experimental subjects are used for evaluation. Ermuth
and Pradel propose a GUI test generation approach [6], and
evaluate it on four programs.

Artzi et al. [36] present a framework for feedback-directed
automated test generation for JavaScript web applications. In
their study, the authors use 10 subjects. Mesbah et al. [37]
present Atusa, a test generation technique for Ajax-based
applications which they evaluate on six web applications. A
comprehensive survey of dynamic analysis and test generation
for JavaScript is presented by Andreasen et al. [38].

Billes et al. [2] present a black-box analysis technique for
multi-client web applications to detect concurrency errors on
three real-world web applications. Hong et al. [39] present a
testing framework to detect concurrency errors in client-side
web applications written in JavaScript, and use five real-world
web applications.

Wang et al. [3] propose a modification to the delta debug-
ging approach that reduces the event trace, which is evaluated
on 10 real-world JavaScript application failures. Dhok et
al. [40] present a concolic testing approach for JavaScript
which is evaluated on 10 subjects.

C. Findings

In the surveyed papers, we observed that the proposed
techniques were evaluated using different sets of programs,
with little to no overlap.

Table I shows the program distribution per paper. In bug-
related studies, 670 subject programs were adopted overall, of
which 633 were unique. 607 of these programs (96%) were
used in only one study, and no subject was used in more than
four papers (Table I, columns 1 and 2). Other studies exhibit
the same trend (Table I, columns 3 and 4): overall, 1,164
subjects were used in all the investigated papers, of which
1,023 were unique. From these, 910 (89%) were used in only
one paper, and no subject was used in more than five papers.

In conclusion, we observe that the investigated studies
involve different sets of programs, since no centralized bench-
mark is available to support reproducible experiments in anal-
ysis and testing related to JavaScript bugs. To fill this gap, in
this paper we propose BUGSJS, a benchmark of real JavaScript
bugs, whose design and implementation is described next.

III. BUGSJS – THE PROPOSED BENCHMARK

To construct a benchmark of real JavaScript bugs, we iden-
tify existing bugs from the programs’ version control histories,
and collect the real fixes provided by developers. Developers

often manually label the revisions of the programs in which
reported bugs are fixed (bug-fixing commits, or patches). As
such, we refer to the revision preceding the bug-fixing commit
as the buggy commit. For the purpose of the benchmark, this
allowed us to extract detailed bug reports and descriptions,
along with the buggy and bug-fixing commits they refer to.

Each bug and fix should adhere to the following properties:
• Reproducibility. One or more test cases are available in

a buggy commit to demonstrate the bug. The bug must
be reproducible under reasonable constraints. For this
reason, we excluded non-deterministic features and flaky
tests from our study, since replicating them in a controlled
environment would be excessively challenging.

• Isolation. The bug-fixing commit applies to JavaScript
source code files only; changes to other artifacts such as
documentation or configuration files are not considered.
The source code of each commit must be cleaned from
irrelevant changes (e.g., feature implementations, refac-
torings, changes to non-JavaScript files). The isolation
property is particularly important in research areas where
the presence of noise in the data has detrimental impacts
on the techniques (e.g., automated program repair, or fault
localization approaches).

 

GitHub
50 subjects

542 bugs453 bugs

Dynamic Validation4 Manual Validation3
795 bugs
10 subjects 

Bugs Collection2Subjects Selection1

Forks

Tags
Patches

Organization

Fig. 1: Overview of the bug selection and inclusion process.

Figure 1 depicts the main steps of the process we performed
to construct our benchmark. First, we adopted a systematic
procedure to select the JavaScript subjects to extract the bug
information from. Then, we collected bug candidates from
the selected projects, and manually validated each bug for
inclusion by means of multiple criteria. Next, we performed
a dynamic sanity check to make sure that the tests introduced
in a bug-fixing commit can detect the bug in the absence of
its fix. Finally, the retained bugs were cleaned from irrelevant
patches (e.g., comments, or whitespaces).

A. Subject Systems Selection

To select appropriate subject systems to include in BUGSJS,
we focused on popular and trending JavaScript projects on
GitHub. Such projects often engage large communities of
developers, and therefore, are more likely to follow best
software development practices, including bug reporting and
tracking. Moreover, GitHub’s issue IDs allow conveniently
connecting bug reports to bug-fixing commits.

Popularity was measured using the projects’ Stargazers
count (i.e., the number of stars owned by the subject’s
GitHub repository). We selected server-side Node.js appli-
cations which are popular (Stargazers count ≥ 100) and
mature (number of commits > 200), and have been actively



TABLE II: Subjects included in BUGSJS

PROGRAM STATS TESTS (#) COVERAGE (%)

Name Description kLOC (JS) Stars Commits Forks All Passing Pending Failing Statements Branches Functions Lines

BOWER9 package manager 16 15,290 2,706 1,995 455 103 19 36 81.11 66.91 80.62 81.11
ESLINT10 linting tool 240 12,434 6,615 2,141 18,528 18,474 0 54 99.21 98.19 99.72 99.21
EXPRESS11 web framework 11 40,407 5,500 7,055 855 855 0 0 98.71 94.32 100 99.95
HESSIAN.JS12 serialization service 6 104 217 23 225 223 2 0 96.42 91.27 98.99 96.42
HEXO13 blog framework 17 23,748 2,545 3,277 875 868 7 0 96.20 90.51 98.54 97.27
KARMA14 test runner 12 10,210 2,485 1,531 331 331 0 0 54.61 34.03 43.98 54.76
MONGOOSE15 ODM 65 17,036 9,770 2,457 2,107 2,071 36 0 90.97 85.95 89.65 91.04
NODE-REDIS16 database client 11 10,349 1,242 1,245 966 965 0 1 99.06 98.19 97.99 99.06
PENCILBLUE17 CMS 46 1,596 3,675 276 807 802 0 5 35.21 19.09 22.91 35.22
SHIELDS18 badge service 20 6,319 2,036 1,432 482 469 13 0 75.98 65.60 83.26 75.97

maintained (year of the latest commit ≥ 2017). We currently
focus on Node.js because it is emerging as one of the most
pervasive technologies to enable using JavaScript in the server
side, leading to the so-called full-stack web applications [1].

We examined the GitHub repository of each retrieved sub-
ject system to ensure that bugs were properly tracked and
labeled. Particularly, we only selected projects in which bug
reports had a dedicated issue label on GitHub’s Issues page,
which allows filtering irrelevant issues (pertaining to, e.g.,
feature requests, build problems, or documentation tasks), so
that only actual bugs are included.

Our initial list of subjects included 50 Node.js programs,
from which we filtered out projects based on the number of
candidate bugs found and the adopted testing frameworks.

B. Bugs Collection

Collecting bugs and bug-fixing commits. For each subject
system, we first queried GitHub for closed issues assigned
with a specific bug label using the official GitHub’s API.19

For each closed bug, we exploit the links existing between
issues and commits to identify the corresponding bug-fixing
commit. GitHub automatically detects these links when there is
a specific keyword (belonging to a predefined list20), followed
by an issue ID (e.g., Fixes #14).

Each issue can be linked to zero, one, or more source
code commits. A closed bug without a bug-fixing commit
could mean that the bug was rejected (e.g., it could not be
replicated), or that developers did not associate that issue with
any commit. We discarded such bugs from our benchmark,
as we require each bug to be identifiable by its bug-fixing
commit. At last, similarly to existing benchmarks [15], we

9https://github.com/bower/bower
10https://github.com/eslint/eslint
11https://github.com/expressjs/express
12https://github.com/node-modules/hessian.js
13https://github.com/hexojs/hexo
14https://github.com/karma-runner/karma
15https://github.com/Automattic/mongoose
16https://github.com/NodeRedis/node redis
17https://github.com/pencilblue/pencilblue
18https://github.com/badges/shields
19https://developer.github.com/v3/
20https://help.github.com/articles/closing-issues-using-keywords/

discarded bugs linked to more than one bug-fixing commit, as
this might imply that they were fixed in multiple steps, or that
the first attempt for fixing them was unsuccessful.

Including corresponding tests. We require each fixed bug to
have unit tests that demonstrate the absence of the bug. To
meet this requirement, we examined the bug-fixing patches
to ensure they also contain changes or additions in the test
files. For this filtering, we manually examined each patch to
determine whether test files were involved. The result of this
step is the list of bug candidates for the benchmark. From the
initial list of 50 subject systems, we considered the projects
having at least 10 bug candidates.

Testing frameworks. There are several testing frameworks
available for JavaScript applications. We collected statistics
about the testing frameworks used by the 50 considered
JavaScript projects. Our results show that there is no single
predominant testing framework for JavaScript (as compared to,
for instance, JUnit which is used by most Java developers). We
found that the majority of tests in our pool were developed
using Mocha21 (52%), Jasmine22 (10%), and QUnit23 (8%).
The prevalence of Mocha as the most popular JavaScript
testing framework was also supported in a previous large-
scale empirical study [28]. Consequently, the initial version of
BUGSJS only includes projects that use Mocha, and extending
to other JavaScript testing frameworks (e.g., for client-side
testing) is left for future work.

Final Selection. Table II reports the names and descriptive
statistics of the 10 applications we ultimately retained. Notice
that all these applications have at least 1000 LOC (frameworks
excluded), thus being representative of modern web applica-
tions (Ocariza et al. [5] report an average of 1,689 LOC for
AngularJS web applications on GitHub with at least 50 stars).

C. Manual Patch Validation

We manually investigated each bug and the corresponding
bug-fixing commit to ensure that only bugs meeting certain
criteria are included, as described below.

21https://mochajs.org/
22https://jasmine.github.io/
23https://qunitjs.com/

https://github.com/bower/bower
https://github.com/eslint/eslint
https://github.com/expressjs/express
https://github.com/node-modules/hessian.js
https://github.com/hexojs/hexo
https://github.com/karma-runner/karma
https://github.com/Automattic/mongoose
https://github.com/NodeRedis/node_redis
https://github.com/pencilblue/pencilblue
https://github.com/badges/shields
https://developer.github.com/v3/
https://help.github.com/articles/closing-issues-using-keywords/
https://mochajs.org/
https://jasmine.github.io/ 
https://qunitjs.com/


TABLE III: Bug-fixing commit inclusion criteria

Rule Name Description

Isolation The bug-fixing changes must fix only one (1) bug (i.e., must close exactly one (1) issue)
Complexity The bug-fixing changes should involve a limited number of files (≤ 3), lines of code (≤ 50) and be understandable within a

reasonable amount of time (max 5 minutes)
Dependency If a fix involves introducing a new dependency (e.g., a library), there must also exist production code changes and new test

cases added in the same commit
Relevant Changes The bug-fixing changes must involve only changes in the production code that aim at fixing the bug (whitespace and comments

are allowed)
Refactoring The bug-fixing changes must not involve refactoring of the production code

Methodology. Two authors of this paper manually investigated
each bug and its corresponding bug-fixing commit and labeled
them according to a well-defined set of inclusion criteria
(Table III). The bugs that met all the criteria were initially
marked as “Candidate Bug” to be considered for inclusion in
the benchmark.

In detail, for each bug, the authors investigated simulta-
neously the code of the commit to ensure relatedness to the
bug being fixed. During the investigation, however, several
bug-fixing commits were too complex to comprehend by the
investigators, either because domain knowledge was required,
or because the number of files or lines of code being modified
was large. We labeled such complex bug-fixing commits as
“Too complex”, and discarded them from the current version
of BUGSJS. The rationale is to keep the size of the patches
within reasonable thresholds, so as to select a high quality
corpus of bugs which can be easily analyzable and process-
able by both manual inspection and automated techniques.
Particularly, we deemed a commit being too complex if the
production code changes involved more than three (3) files
or more than 50 LOC, or if the fix required more than 5
minutes to understand. In all these cases, a discussion was
triggered among the authors, and the case was ignored only if
the authors unanimously decided that the fix was too complex.
Results. Overall, we manually validated 795 commits (i.e.,
bug candidates), of which 542 (68.18 %) fulfilled the criteria.
Table IV (Manual) illustrates the result of this step for each
application and across all applications.

The most common reason for excluding a bug is that the fix
was deemed as too complex (136). Other frequent scenarios
include cases where a bug-fixing commit addressed more than
one bug (32), or where the fix did not involve production
code (29), or contained refactoring operations (39). Also, we
found four cases in which the patch did not involve the actual
test’s source code, but rather comments or configuration files.

D. Sanity Checking through Dynamic Validation

To ensure that the test cases introduced in a bug-fixing
commit were actually intended to test the buggy feature, we
adopted a systematic and automatic approach described next.
Methodology. Let Vbug be the version of the source code that
contains a bug b, and let Vfix be the version in which b is
fixed. The existing test cases in Vbug do not fail due to b.
However, at least one test of Vfix should fail when executed
on Vbug . This allows us to identify the test in Vfix used to

TABLE IV: Manual and dynamic validation statistics per
application for all considered commits

B
O

W
E

R

E
S

L
IN

T

E
X

P
R

E
S

S

H
E

S
S

IA
N

.J
S

H
E

X
O

K
A

R
M

A

M
O

N
G

O
O

S
E

N
O

D
E

-R
E

D
IS

P
E

N
C

IL
B

L
U

E

S
H

IE
L

D
S

To
ta

l

Initial number of bugs 10 559 39 17 24 37 56 25 18 10 795

M
A

N
U

A
L

8 Fixes multiple issues 0 18 1 0 1 5 2 5 0 0 32
8 Too complex 0 94 0 4 8 4 8 7 9 2 136
8 Only dependency 1 9 0 0 1 0 2 0 0 0 13
8 No production code 0 20 4 0 1 1 2 0 0 1 29
8 No tests changed 1 0 1 0 0 0 0 1 1 0 4
8 Refactoring 0 36 0 0 0 1 1 1 0 0 39

After manual validation 8 382 33 13 13 26 41 11 8 7 542

D
Y

N
A

M
IC 8 Test does not fail at Vbug 1 11 6 4 1 2 8 3 1 3 40

8 Dependency missing 3 17 0 0 0 1 1 0 0 0 22
8 Error in tests 1 7 0 0 0 0 3 1 0 0 12
8 Not Mocha 0 14 0 0 0 1 0 0 0 0 15

4 Final Number Of Bugs 3 333 27 9 12 22 29 7 7 4 453

demonstrate b (isolation) and to discard cases in which tests
immaterial to the considered buggy feature were introduced.

To run the tests, we obtained the dependencies and set
up the environment for each specific revision of the source
code. Over time, however, developers made major changes
to some of the projects’ structure and environment, making
tests replication infeasible. These cases occurred, for instance,
when older versions of required dependencies were no longer
available, or when developers migrated to a different testing
framework (e.g., from QUnit to Mocha).

For the projects that used scripts (e.g., grunt, bash,
Makefile) to run their tests, we extracted them, so as to
isolate each test’s execution and avoiding possible undesirable
side effects caused by running the complete test suite.
Results. After the dynamic analysis, 453 bug candidates were
ultimately retained for inclusion in BUGSJS (84% of the 542
bug candidates from the previous step).

Table IV (Dynamic) reports the results for the dynamic
validation phase. In 22 cases, we were unable to run the tests
because dependencies were removed from the repositories. In
15 cases, the project at revision Vbug did not use Mocha for
testing b. In 12 cases, tests were failing during the execution,
whereas in 40 cases no tests failed when executed on Vbug .
We excluded all such bug candidates from the benchmark.



 

BugsJS Organization

...

Forked

...

Forked

Subject#N 
Fork

Source code 
Tests 
Cleaned patches 
Tagged bug fixes

Subject#N 
Original repository

Subject#1 
Fork

Source code 
Tests 
Cleaned patches 
Tagged bug fixes

Subject#1 
Original repository

bug dataset 
Repository 

Utility framework 
Bug statistics 
Test commands 
Bug report data 

docker environment 
Repository 

Pre -built environment 

Fig. 2: Overview of BUGSJS architecture

E. Patch Creation

We performed manual cleaning on the bug-fixing patches,
to make sure they only include changes related to bug
fixes. In particular, we removed irrelevant files (e.g., *.md,
.gitignore, LICENSE), and irrelevant changes (i.e., source
code comments, when only comments changed, and comments
unrelated to bug-fixing code changes, as well as changes solely
pertaining to whitespaces, tabs, or newlines). Furthermore, for
easier analysis, we separated the patches into two separate
files, the first one including the modifications to the tests, and
the second one pertaining to the production code fix.

F. Final Benchmark Infrastructure and Implementation

Infrastructure. Figure 2 illustrates the overall architecture
of BUGSJS, which supports common activities related to the
benchmark, such as running the tests at each revision, or
checking out specific commits. The framework’s command-
line interface includes the following commands:

• info: Prints out information about a given bug.
• checkout: Checks-out the source code for a given bug.
• test: Runs all tests for a given bug and measures the

test coverage.
• per-test: Runs each test individually and measures the

per-test coverage for a given bug.
For the checkout, test, and per-test commands, the

user can specify the desired code revision: buggy, buggy with
the test modifications applied, or the fixed version.

BUGSJS is equipped with a pre-built environment that in-
cludes the necessary configurations for each project to execute
correctly. This environment is available as a Docker image
along with a detailed step-by-step tutorial.

The interested reader can find BUGSJS, all subject systems
and related bugs in the dedicated GitHub organization:

https://github.com/BugsJS/

Source code commits and tests. We used GitHub’s fork
functionality to make a full copy of the git history of the
subject systems. The unique identifier of each commit (i.e., the
commit SHA1 hashes) remains intact when forking. In this way,
we were able to synchronize the copied fork with the original

repository and keep it up-to-date. Importantly, our benchmark
will not be lost if the original repositories get deleted.

The fork is a separate git repository; therefore, we can push
commits to it. Taking advantage of this possibility, we have
extended the repositories with additional commits, to separate
the bug-fixing commits and their corresponding tests. To make
such commits easily identifiable, we tagged them using the
following notation (X denotes a sequential bug identifier):

• Bug-X: The parent commit of the revision in which the
bug was fixed (i.e., the buggy revision);

• Bug-X-original: A revision with the original bug-
fixing changes (including the production code and the
newly added tests);

• Bug-X-test: A revision containing only the tests in-
troduced in the bug-fixing commit, applied to the buggy
revision;

• Bug-X-fix: A revision containing only the production
code changes introduced to fix the bug, applied to the
buggy revision;

• Bug-X-full: A revision containing both the cleaned fix
and the newly added tests, applied to the buggy revision.

Test runner commands. For each project, we have included
the necessary test runner commands in a CSV file. Each row
of the file corresponds to a bug in the benchmark, and contains
the following information:

1) A sequential bug identifier;
2) The test runner command required to run the tests;
3) The test runner command required to produce the test

coverage results;
4) The Node.js version required for the project at the specific

revision where the bug was fixed, so that the tests can
execute properly;

5) The preparatory test runner commands (e.g., to initial-
ize the environment to run the tests, which we call
pre-commands);

6) The cleaning test runner commands (e.g., the tear down
commands, which we call post-commands) to restore
the application’s state.

Test coverage data. Furthermore, for each project, we in-
cluded in BUGSJS some pre-calculated information about the
tests of the Bug-X versions in a separate CSV file. Each row
of the file contains the following information:

1) A sequential bug identifier;
2) Total LOC in the source code, as well as LOC covered

by the tests;
3) The number of functions in the source code, as well as

the number of functions covered by the tests;
4) The number of branches in the source code, as well as

the number of branches covered by the tests;
5) The total number of tests in the test suite, along with the

the number of passing, failing and pending tests (i.e., the
tests which were skipped due to execution problems).

Bug report data. Forking repositories does not maintain
the issue data associated with the original repository. Thus,

https://github.com/BugsJS/


11

48

3,685

8

20

Production Test

(a) Before cleaning

11

44

3,685

7

20

Production Test

(b) Cleaned

11

41

3,632

5

17

Production Test

(c) Cleaned+No Comments

Fig. 3: Distribution of the churn in bug-fixing commits.

the links appearing in the commit messages of the forked
repository still refer to the original issues. In order to preserve
the bug reports, we obtained them via the GitHub’s API
and stored them in the Google’s Protocol Buffers24 format.
Particularly, for each bug report, we store the original issue
identifier paired with our sequential bug identifier, the text of
the bug description, the issue open and close dates, the SHA1

of the original bug-fixing commit along with the commit date
and commit author identifiers. Lastly, we save the comments
from the issues’ discussions.

IV. ANALYSIS

To gain a better understanding about the characteristics of
the bugs and fixes included in BUGSJS, we have performed
two analyses to quantitatively and qualitatively assess the
representativeness of our benchmark.

A. Code churn

Code churn is a measure that approximates the rate at which
code evolves. It is defined as the sum of the number of lines
added and removed in a source code change. The churn is an
important measure with several uses in software engineering
studies, e.g., as a direct or indirect predictor in bug prediction
models [41, 42].

We utilize the distribution of code churn to describe the
overall data distribution in the benchmark, and understand
to what extent it can be used to support software testing
techniques (e.g., fault localization, program repair) that are
directly affected by the size of the source code changes.

Figure 3 illustrates the distribution of code churn in each
bug-fixing commit in BUGSJS, before cleaning the patches
(Figure 3a), after removing changes unrelated to the fix, while
retaining related comments added or removed during the bug
fix (Figure 3b), and after cleaning the fixes and also removing
all the comments and whitespaces (Figure 3c). The box and
whisker plots show the quartiles of the data, enhanced by the
underlying violin plots to better depict the data distribution.

The median value for the code churn required to fix a
bug is 5 and 17 for production and test code, respectively
(excluding irrelevant changes, comments, and whitespaces).

24https://developers.google.com/protocol-buffers/

This essentially means that for each line of bug-fixing change
in the production code, more than three lines of test code were
changed on average.

We can also observe that nearly half of the changes done
to the production code involve more than five lines of code,
suggesting that existing fault localization and repair techniques
will fall short in being applicable on real JavaScript bugs, as
they currently deal with one-liner changes only. Previous work
showed that the same conclusion holds for Java projects [43].

In addition, comparing the median values in Figure 3
suggests that developers, on average, add/remove one line
of unrelated code changes (i.e., 8 − 7) and two lines of
comments/whitespace (i.e., 7 − 5) when fixing a bug. This
essentially shows the importance of the manual isolation and
cleaning performed on the bugs included in BUGSJS.

The largest value for churn in test code is 3,632 lines
(Figure 3c), occurring in a bug-fixing commit in the ESLINT
project. This commit corresponds to generated test data com-
mitted along with the production code bug-fixing changes. A
closer look at the data revealed that there are five other such
commits in this project, all changing more than 1,000 lines of
test code. Such commits in which the number of changes is
exceptionally high (i.e., outliers) should be carefully handled
or discarded when conducting empirical studies.

B. Patterns in Bugs and Fixes

We further analyzed the bugs in BUGSJS to observe oc-
currence of repeated bug patterns. Recurring patterns can, for
example, indicate which categories of bugs merit the great-
est attention, and which novel automated repair techniques
tailored for JavaScript researchers should focus on. However,
in our opinion, a wide range of bugs should be represented,
because diversity can make the benchmark more suitable to be
utilized for different analysis, testing, and repair techniques.

In addition, we carefully looked at low-level bug fixes for
recurring patterns. Previous work [43, 44, 45] have studied
patterns in bug-fixing changes within Java programs. They
suggest that the existence of patterns in fixes reveals that
specific kinds of code constructs (e.g., if conditionals) could
signal weak points in the source code where developers are
consistently more prone to introducing bugs [44].

Methodology. Four authors of this paper manually investi-
gated all the 453 bug-fixing commits in BUGSJS and at-
tempted to assign the bugs and bug-fixing changes with one
of the predefined categories suggested in previous studies.
Particularly, we utilized the bug pattern categories proposed
by Hanam et al. [22] which is, to our knowledge, the only
work proposing a catalogue of bug patterns in server-side
JavaScript programs. Our goal was to assess to which extent
these patterns apply to the bugs included in BUGSJS.

Concerning patterns in bug fixes, on the other hand, we used
the categories proposed by Pan et al. [44]. These categories,
however, are related to Java bug fixes. Our aim is to assess
whether they generalize to JavaScript, or whether, in contrast,
JavaScript-specific bug fix patterns would emerge.

https://developers.google.com/protocol-buffers/


TABLE V: Bug pattern categories (Hanam et al. [22])

Bug Pattern Description #

Dereferenced non-values Uninitialized variables 35

Incorrect API config Missing API call configuration values 3

Incorrect comparison === and == used interchangeably 2

Unhanded exceptions Missing try-catch block 2

Missing arguments Function call with missing arguments 0

Incorrect this bounding Accessing a wrong this reference 0

Following the original category definitions [22, 44], we
assigned each individual bug/fix to exactly one category.
Disagreements concerning classification or potential new cat-
egories were resolved by further discussion between the
authors. To identify the occurrences of such patterns, we
opted for a manual analysis to ensure covering potential
new patterns, and to add an extra layer of validation against
potential misclassifications (e.g., false positives).

1) Bug Patterns: Hanam et al. [22] discuss 13 cross-
project bug patterns occurring in JavaScript pertaining to six
categories, which are listed in Table V.

Across all 453 bugs of BUGSJS, our analysis found 42
occurrences of the categories proposed by Hanam et al. [22].
The last column of Table V shows the detailed occurrences for
each category. Our analysis showed that the majority of the
bugs are indeed logical errors made by developers during the
implementation which do not necessarily fall into recurring
patterns. This essentially shows that the bugs included in
BUGSJS are rather diverse in nature, making it ideal for
evaluating a wide range of analysis and testing techniques.

In the found patterns, the Dereferenced non-values is by
far the most prevalent bug pattern (Table V). Previous work
showed that this pattern occurs frequently also in client-
side JavaScript applications [5]. Developers could avoid these
syntax-related bugs by adopting appropriate coding standards.
Moreover, IDEs can be enhanced to alert programmers to
possible effects or bad practices. They could also aid in
prevention by prohibiting certain actions or by recommending
the creation of stable constructs.

2) Bug fix patterns: Table VI shows the number of bug fix
occurrences followed the categories by Pan et al. [44]. (For
fixes spanning multiple lines, we possibly assigned more than
one category to a single bug-fixing commit, hence, the overall
number of occurrences is greater than the number of bugs.)

Note that, since the categories proposed by Pan et al.
have been derived from Java programs, we had to make sure
to match them correctly on JavaScript code. In particular,
until ECMAScript 2015, JavaScript did not include syntactical
support for classes. Classes were emulated using functions
as constructors, and methods/fields are added to their proto-
type [46, 47, 48]. In addition, object literals could represent
imaginary classes: comma-separated list of name-value pairs
enclosed in curly braces, where the name-value pairs declare
the class fields/methods. We have taken all these aspects into

TABLE VI: Bug-fixing change types (Pan et al. [44])

Category Example #

E
X

IS
T

IN
G

if-related Changing if conditions 291

Assignments Modifying the RHS of an assignment 166

Function calls Adding or modifying an argument 151

Class fields Adding/removing class fields 151

Function declarations Modifying a function’s signature 94

Sequences Adding a function call to a sequence of
calls, all with the same receiver

42

Loops Changing a loop’s predicate 7

switch blocks Adding/removing a switch branch 6

try blocks Introducing a new try-catch block 1

N
E

W

return statements Changing a return statement 40

Variable declaration Declaring an existing variable 2

Initialization Initializing a variable with empty object
literal/array

3

account during the assignment task, to avoid misclassifications.
Our analysis revealed that, in 88% of bugs in BUGSJS, the

fix includes changes falling into one of the proposed cate-
gories. The most prevalent bug fix patterns involve changing
an if statement (i.e., modifying the if condition or adding a
precondition), changing assignment statements, and modifying
function call arguments (Table VI). The same three categories
have been also found to be most recurring in Java code, but
with a different ordering: Pan et al. [44] report that the most
prevalent fix patterns are changes done on method calls, if
conditions, and assignment expressions. In addition, we found
that changes to class fields are also prevalent. This can be
explained by the fact that in JavaScript, object literals are
frequently created without the need for defining a class or
function constructor, and, as far as fixing bugs is concerned,
updating their attributes (i.e., fields) is a common practice.

C. JavaScript-related Bug Patterns

We found three new recurring patterns in our benchmark,
which we describe next.
Changes to the return statement’s expression. We found
a recurring bug-fixing pattern involving changing the return
statement’s expression of a function, i.e.:
– return node.type !== "A";
+ return !(node.type === "A" && lastI.type === "R");

Variable declaration. In JavaScript, it is possible to use a
variable without declaring it. However, this has implications
which might lead to subtle silent bugs. For example, when a
variable is used inside a function without being declared, it is
“hoisted” to the top of the global scope. As a consequence,
it is visible to all functions, outside its original lexical scope,
which can lead to name clashes. This fix pattern essentially
includes declaring a variable which has already been in use.
Initialization of empty variables. This bug-fixing pattern
category corresponds to Hanam et al.’s first bug pattern, i.e.,



Dereferenced non-values. To avoid this type of bug, developers
can add additional if statements, comparing values against
“falsey” values (“undefined” type, or “null”). This bug fix
pattern provides a shortcut to using an if statement, by using
a logical “or” operator, e.g., a = a || {}, which means that
the value of a will remain intact if it already has a “non-falsey”
value, or it will be initialized with an empty object otherwise.

V. DISCUSSION

Overall, our analysis reveals that the bug fixes included in
BUGSJS cover a diverse range of categories, some of which
being specific only to JavaScript. As such, these results might
drive devising novel software analysis and repair techniques
for JavaScript, with BUGSJS being a suitable real world bug
benchmark for evaluating such techniques.

In the next section, we discuss some of the possible use
cases of our benchmark in supporting empirical studies in
software analysis and testing, as well as its limitations and
threats to validity of our study.

A. Possible Use Cases

1) Testing techniques: Various fields of testing research can
benefit from BUGSJS. First, our benchmark includes more
than 25k JavaScript test cases, which makes it a rather large
dataset for different regression testing studies (e.g., test priori-
tization, test minimization, or test selection). Second, BUGSJS
can play a role to support research in software oracles (e.g.,
automated generation of semantically-meaningful assertions),
as it contains all test suites’ evolution as well as examples of
real fixes made by developers. Additionally, these can be used
to drive the design of automated test repair techniques [49, 50].
Finally, test generation or mutation techniques for JavaScript
can be evaluated on BUGSJS at a low cost, since pre-computed
coverage information are available for use.

2) Bug prediction using static source code analysis: To
construct reliable bug prediction models, training feature sets
are extracted from the source code, comprising instances of
buggy and healthy code, and static metrics. BUGSJS can
support these studies since it streamlines the hardest part of
constructing the training and testing datasets, that is, deter-
mining whether a given code element is affected by a bug.
As such, the cleaned fixes included in BUGSJS make this
task much easier. Also, the availability of both uncleaned and
cleaned bug-fixing patches in the dataset can allow assessing
the sensitivity of the proposed models to the noise.

3) Bug localization: BUGSJS can support devising novel
bug localization techniques for JavaScript. Approaches that
use NLP can take advantage of our benchamark since bugs
are readily available to be processed. Indeed, text retrieval
techniques are used to formulate a natural language query
that describes the observed bug. To this aim, BUGSJS con-
tains pointers to the natural language bug description and
discussions for several hundreds of real world bugs. Sim-
ilarly, BUGSJS will be of great benefit for other popular
bug localization approaches, e.g., the spectrum-based tech-
niques [51, 52, 53, 54].

4) Automated program repair: Automated program repair
techniques aim at automatically fixing bugs in programs,
by generating a large pool of candidate fixes, to be later
validated. The manually cleaned patches available in BUGSJS
can be used as learning examples for patch generation in
novel automated program repair for JavaScript. Also, BUGSJS
provides an out-of-the-box solution for automatic dynamic
patch validation.

B. Limitations

The initial version of BUGSJS includes only server-side
JavaScript applications developed with the Node.js framework.
As such, experiments evaluating the client-side (e.g., the
DOM) are not currently supported. While our survey revealed
a large number of subjects being used for evaluating such
techniques, the majority of these programs could not be
directly included in our proposed benchmark.

Indeed, in the JavaScript realm, the availability of many
implementations, standards, and testing frameworks poses
major technical challenges with respect to devising a uniform
and cohesive bugs infrastructure. Similar reasoning holds for
selecting Mocha as a reference testing framework.

Running tests for browser-based programs may require com-
plex and time-consuming configurations. When dealing with a
large and diverse set of applications, achieving isolation would
require automating each single configuration for all possible
JavaScript development and testing frameworks, which can be
a cumbersome task. Nevertheless, all the subjects included in
BUGSJS have been previously used by at least one work in
our literature survey (e.g., BOWER, SHIELDS, KARMA, NODE-
REDIS, and MONGOOSE are all used in bug-related studies).

C. Threats to validity

The main threat to the internal validity of this work is the
possibility of introducing bias when selecting and classifying
the surveyed papers and the bugs included in the benchmark.

Our paper selection was driven by the keywords related to
software analysis and testing for JavaScript (Section II). We
may have missed relevant studies that are not captured by our
list of terms. We mitigate this threat by performing an issue-
by-issue, manual search in the major software engineering con-
ference proceedings and journals, followed by a snowballing
process. We, however, cannot claim that our survey captures
all relevant literature; yet, we are confident that the included
papers cover the major related studies.

Concerning the bugs, we manually classified all candidate
bugs into different categories (Section III-C), and the retained
bugs into categories pertaining to existing bug and fix tax-
onomies (Section IV-B). To minimize classification errors,
multiple authors simultaneously analyzed the source code and
performed the classifications individually, and disagreements
were resolved by further discussions among the authors.

Threats to the external validity concern the generalization
of our findings. We selected only 10 applications and our
bugs may not generalize to different projects, or other relevant
classes of bugs might be unrepresented within our benchmark.



We tried to mitigate this threat by selecting applications with
different sizes and pertaining to different domains. However,
other subject systems are necessary to fully confirm the
generalizability of our results, and corroborate our findings.

With respect to reproducibility of our results, all classifi-
cations, subjects, and experimental data are available online,
making the analysis reproducible.

VI. RELATED WORK

A. C, C++, and C# benchmarks
The Siemens benchmark suite [55] was one of the first

datasets of bugs used in testing research. It consists of seven C
programs, containing manually seeded faults. The first widely
used benchmark of real bugs and fixes is the SIR (Software-
artifact Infrastructure Repository) [14]. It contains multiple
versions of Java, C, C++, and C# programs comprising test
suites, bug data, and scripts. The benchmark contains both
real and seeded faults, the latter being more frequent.

Le Goues et al. [16] proposed two benchmarks for C
programs called ManyBugs and IntroClass,25 which include
1,183 bugs in total. The benchmarks are designed to support
the comparative evaluation of automatic repair, targeting large-
scale production (ManyBugs) as well as smaller (IntroClass)
programs. ManyBugs is based on nine open-source programs
(5.9M LOC and over 10k test cases) and it contains 185 bugs.
IntroClass includes 6 small programs and 998 bugs.

Rahman et al. [56] examined the OpenCV project mining 40
bugs from seven out of 52 C++ modules into the benchmark
Pairika.26 The seven modules analyzed contain more than
490k LOC, about 11k test cases and each bug is accompanied
by at least one failing test.

Lu et al. [57] propose BugBench,27 a collection of 17
open-source C/C++ programs containing 19 bugs pertaining
to memory and concurrency issues.

B. Java benchmarks
Just et al. [15] presented Defects4J, a bug database and

extensible framework containing 357 validated bugs from five
real-world Java programs. BUGSJS shares with Defects4J the
idea of mining bugs from the version control history. However,
BUGSJS has some additional features: subject systems are
accessible in the form of git forks on a central GitHub
repository, which maintains the whole project history. Further,
all programs are equipped with pre-built environments in form
of Docker containers. Moreover, in this paper we also provide
a more detailed analysis of subjects, tests, and bugs.

Bugs.jar [58] is a large-scale dataset intended for research in
automated debugging, patching, and testing of Java programs.
Bugs.jar consists of 1,158 bugs and patches, collected from
eight large, popular open-source Java projects.

iBugs [59] is another benchmark containing real Java bugs
from bug-tracking systems originally proposed for bug local-
ization research. It is composed of 390 bugs and 197k LOC
coming from three open source projects.

25http://repairbenchmarks.cs.umass.edu/
26https://github.com/tum-i22/Pairika
27https://github.com/lihebi/bugbench

QuixBugs [18] is a benchmark suite of 40 confirmed bugs
used in program repair experiments targeting Python and Java
with passing and failing test cases.

BugSwarm [17] is a recent dataset of real software bugs and
bug fixes to support various testing empirical experiments such
as test generation, mutation testing, and fault localization.

To our knowledge, BUGSJS is the first benchmark of
bugs and related artifacts (e.g., source code and test cases)
that targets the JavaScript domain. In addition, BUGSJS
differentiates from the previously-mentioned benchmarks in
the following aspects: (1) the subjects are provided as git
forks with complete histories maintained, (2) a framework is
provided with several features enabling more convenient usage
of the benchmark, (3) the subjects and the framework itself are
available as GitHub repositories, (4) Docker container images
are provided for easier usage, and (5) the bug descriptions are
accompanied by their discussions in natural language.

VII. CONCLUSIONS

The increasing interest of developers and industry around
JavaScript has fostered a huge amount of software engineering
research around this language. Novel analysis and testing
techniques are being proposed every year, however, without
a centralized benchmark of subjects and bugs, it is difficult to
fairly evaluate, compare, and reproduce research results.

To fill this gap, in this paper we presented BUGSJS, a bench-
mark of 453 real, manually validated JavaScript bugs from 10
popular JavaScript programs. Our quantitative and qualitative
analyses show the diversity of the bugs included in BUGSJS
that can be used for conducting highly-reproducible empirical
studies in software analysis and testing research related to,
among others, regression testing, bug prediction, and fault
localization for JavaScript. Using BUGSJS in future studies
is further facilitated by a flexible framework implemented
to automate checking out specific revisions of the programs’
source code, running each of the test cases demonstrating the
bugs, and reporting test coverage.

As part of our ongoing and future work, we plan to include
more subjects (and corresponding bugs) to the benchmark.
Our long-term goal is to also include client-side JavaScript
web applications in BUGSJS. Furthermore, we are planning
to develop an abstraction layer to allow easier extensibility of
our infrastructure to other JavaScript testing frameworks.

ACKNOWLEDGMENTS

Gyimesi and Vancsics were supported by project EFOP-3.6.3-
VEKOP-16-2017-0002, co-funded by the European Social
Fund. Beszédes was supported by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences. This work
was partially supported by grant 2018-1.2.1-NKP-2018-00004
“Security Enhancing Technologies for the IoT” funded by the
Hungarian National Research, Development and Innovation
Office. Ministry of Human Capacities, Hungary grant 20391-
3/2018/FEKUSTRAT is acknowledged. Mesbah, Stocco and
Mazinanian were supported in part by NSERC Discovery and
DAS grants.

http://repairbenchmarks.cs.umass.edu/
https://github.com/tum-i22/Pairika
https://github.com/lihebi/bugbench


REFERENCES

[1] S. Alimadadi, A. Mesbah, and K. Pattabiraman,
“Understanding asynchronous interactions in full-stack
JavaScript,” in Proc. of 38th International Conference
on Software Engineering (ICSE), 2016.

[2] M. Billes, A. Møller, and M. Pradel, “Systematic black-
box analysis of collaborative web applications,” in Proc.
of ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), 2017.

[3] J. Wang, W. Dou, C. Gao, Y. Gao, and J. Wei, “Context-
based event trace reduction in client-side JavaScript ap-
plications,” in Proc. of International Conference on Soft-
ware Testing, Verification and Validation (ICST), 2018.

[4] J. Wang, W. Dou, Y. Gao, C. Gao, F. Qin, K. Yin,
and J. Wei, “A comprehensive study on real world
concurrency bugs in Node.js,” in Proc. of International
Conference on Automated Software Engineering, 2017.

[5] F. S. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mes-
bah, “A Study of Causes and Consequences of Client-
Side JavaScript Bugs,” IEEE Transactions on Software
Engineering, vol. 43, no. 2, pp. 128–144, Feb 2017.

[6] M. Ermuth and M. Pradel, “Monkey see, monkey do:
Effective generation of GUI tests with inferred macro
events,” in Proc. of 25th International Symposium on
Software Testing and Analysis (ISSTA), 2016.

[7] C. Q. Adamsen, A. Møller, R. Karim, M. Sridharan,
F. Tip, and K. Sen, “Repairing event race errors by con-
trolling nondeterminism,” in Proc. of 39th International
Conference on Software Engineering (ICSE), 2017.

[8] M. Madsen, F. Tip, E. Andreasen, K. Sen, and
A. Møller, “Feedback-directed instrumentation for de-
ployed JavaScript applications,” in Proc. of 38th Interna-
tional Conference on Software Engineering (ICSE), 2016.

[9] S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Hybrid
DOM-sensitive change impact analysis for JavaScript,”
in Proc. of European Conference on Object-Oriented
Programming (ECOOP), 2015.

[10] Y. Jia and M. Harman, “An analysis and survey of
the development of mutation testing,” Transactions on
Software Engineering, vol. 37, no. 5, 2011.

[11] R. Gopinath, C. Jensen, and A. Groce, “Mutations: How
close are they to real faults?” in Proc. of International
Symposium on Software Reliability Engineering, 2014.

[12] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,
R. Holmes, and G. Fraser, “Are mutants a valid substitute
for real faults in software testing?” in Proc. of ACM
SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), 2014.

[13] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation
an appropriate tool for testing experiments?” in Proc. of
International Conference on Software Engineering, 2005.

[14] H. Do, S. Elbaum, and G. Rothermel, “Supporting
controlled experimentation with testing techniques: An
infrastructure and its potential impact,” Empirical Softw.
Engg., vol. 10, no. 4, pp. 405–435, Oct. 2005.

[15] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A
database of existing faults to enable controlled testing
studies for Java programs,” in Proc. of 2014 International
Symposium on Software Testing and Analysis, 2014.

[16] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun,
P. Devanbu, S. Forrest, and W. Weimer, “The ManyBugs
and IntroClass benchmarks for automated repair of C
programs,” IEEE Transactions on Software Engineering
(TSE), vol. 41, no. 12, pp. 1236–1256, December 2015.

[17] N. Dmeiri, D. A. Tomassi, Y. Wang, A. Bhowmick,
Y.-C. Liu, P. Devanbu, B. Vasilescu, and C. Rubio-
Gonzalez, “BugSwarm: Mining and Continuously Grow-
ing a Dataset of Reproducible Failures and Fixes,” in
Proc. of 41st International Conference on Software En-
gineering (ICSE), 2019.

[18] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama,
“QuixBugs: A multi-lingual program repair benchmark
set based on the Quixey Challenge,” in Proc. of Interna-
tional Conference on Systems, Programming, Languages,
and Applications: Software for Humanity: Companion.

[19] G. Fraser and A. Arcuri, “Sound empirical evidence in
software testing,” in Proc. of 34th International Confer-
ence on Software Engineering (ICSE), 2012.

[20] A. Gkortzis, D. Mitropoulos, and D. Spinellis, “Vuli-
nOSS: A dataset of security vulnerabilities in open-
source systems,” in Proc. of 15th International Confer-
ence on Mining Software Repositories, 2018.

[21] Z. Gao, C. Bird, and E. T. Barr, “To type or not to type:
quantifying detectable bugs in JavaScript,” in Proc. 39th
International Conference on Software Engineering, 2017.

[22] Q. Hanam, F. S. d. M. Brito, and A. Mesbah, “Discover-
ing bug patterns in JavaScript,” in Proc. of 24th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), 2016.

[23] F. S. Ocariza Jr, K. Pattabiraman, and A. Mesbah, “De-
tecting unknown inconsistencies in web applications,” in
Proc. of 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2017.

[24] F. S. Ocariza, Jr., K. Pattabiraman, and A. Mesbah, “De-
tecting inconsistencies in JavaScript MVC applications,”
in Proc. of 37th International Conference on Software
Engineering (ICSE), 2015.

[25] F. S. Ocariza, G. Li, K. Pattabiraman, and A. Mesbah,
“Automatic fault localization for client-side JavaScript,”
Softw. Test. Verif. Reliab., vol. 26, no. 1, Jan. 2016.

[26] F. S. Ocariza, Jr., K. Pattabiraman, and A. Mesbah, “Ve-
jovis: Suggesting fixes for JavaScript faults,” in Proc. of
36th International Conference on Software Engineering.

[27] J. Davis, A. Thekumparampil, and D. Lee, “Node.fz:
Fuzzing the server-side event-driven architecture,” in
Proc. of 12nd European Conference on Computer Sys-
tems (EuroSys), 2017.

[28] A. M. Fard and A. Mesbah, “JavaScript: The (un)covered
parts,” in Proc. of IEEE International Conference on Soft-
ware Testing, Verification and Validation (ICST), 2017.

[29] S. Mirshokraie and A. Mesbah, “JSART: JavaScript



assertion-based regression testing,” in Web Engineering
(ICWE), 2012, pp. 238–252.

[30] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Ef-
ficient JavaScript mutation testing,” in Proc. of 6th In-
ternational Conference on Software Testing, Verification
and Validation (ICST), 2013.

[31] ——, “Guided mutation testing for JavaScript web ap-
plications,” IEEE Transactions on Software Engineering,
vol. 41, no. 5, pp. 429–444, May 2015.

[32] ——, “Atrina: Inferring unit oracles from GUI test
cases,” in Proc. of International Conference on Software
Testing, Verification and Validation (ICST), 2016.

[33] ——, “JSEFT: Automated JavaScript unit test genera-
tion,” in Proc. of 8th International Conference on Soft-
ware Testing, Verification and Validation (ICST), 2015.

[34] C. Quist, G. Mezzetti, and A. Møller, “Analyzing test
completeness for dynamic languages,” in Proc. of Inter-
national Symposium on Software Testing and Analysis.

[35] A. M. Fard, A. Mesbah, and E. Wohlstadter, “Gener-
ating fixtures for JavaScript unit testing,” in Proc. of
30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2015.

[36] S. Artzi, J. Dolby, S. H. Jensen, A. Moller, and F. Tip,
“A framework for automated testing of JavaScript web
applications,” in 33rd International Conference on Soft-
ware Engineering (ICSE), 2011.

[37] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-
based automatic testing of modern web applications,”
IEEE Transactions on Software Engineering, 2012.

[38] E. Andreasen, L. Gong, A. Møller, M. Pradel, M. Se-
lakovic, K. Sen, and C.-A. Staicu, “A survey of dynamic
analysis and test generation for JavaScript,” ACM Com-
put. Surv., vol. 50, no. 5, pp. 66:1–66:36, Sep. 2017.

[39] S. Hong, Y. Park, and M. Kim, “Detecting concurrency
errors in client-side JavaScript web applications,” in
Proc. of IEEE 7th International Conference on Software
Testing, Verification and Validation, 2014.

[40] M. Dhok, M. K. Ramanathan, and N. Sinha, “Type-aware
concolic testing of JavaScript programs,” in Proc. of 38th
International Conference on Software Engineering, 2016.

[41] N. Nagappan and T. Ball, “Use of relative code churn
measures to predict system defect density,” in Proc. of
27th International Conference on Software Engineering.

[42] E. Giger, M. Pinzger, and H. C. Gall, “Comparing
fine-grained source code changes and code churn for
bug prediction,” in Proc. of 8th Working Conference on
Mining Software Repositories (MSR), 2011, pp. 83–92.

[43] E. C. Campos and M. d. A. Maia, “Common bug-fix
patterns: A large-scale observational study,” in Proc.
of ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2017.

[44] K. Pan, S. Kim, and E. J. Whitehead, “Toward an
understanding of bug fix patterns,” Empirical Software
Engineering, vol. 14, no. 3, pp. 286–315, Jun 2009.

[45] H. Zhong and Z. Su, “An empirical study on real bug
fixes,” in Proc. of 37th International Conference on

Software Engineering (ICSE), 2015, pp. 913–923.
[46] L. H. Silva, M. T. Valente, and A. Bergel, “Refactoring

legacy JavaScript code to use classes: The good, the bad
and the ugly,” in Mastering Scale and Complexity in
Software Reuse, 2017.

[47] S. Rostami, L. Eshkevari, D. Mazinanian, and N. Tsan-
talis, “Detecting function constructors in JavaScript,” in
Proc. of IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2016.

[48] L. Eshkevari, D. Mazinanian, S. Rostami, and N. Tsan-
talis, “JSDeodorant: Class-awareness for JavaScript Pro-
grams,” in Proceedings of the 39th International Confer-
ence on Software Engineering Companion, 2017.

[49] A. Stocco, R. Yandrapally, and A. Mesbah, “Visual
web test repair,” in Proc. of 26th ACM Joint European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2018.

[50] M. Hammoudi, G. Rothermel, and A. Stocco, “WATER-
FALL: An incremental approach for repairing record-
replay tests of web applications,” in Proc. of 24th
International Symposium on Foundations of Software
Engineering (FSE), 2016.

[51] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A
survey on software fault localization,” IEEE Transactions
on Software Engineering, vol. 42, no. 8, 2016.

[52] A. Perez, R. Abreu, and A. van Deursen, “A test-suite di-
agnosability metric for spectrum-based fault localization
approaches,” in Proc. of 39th International Conference
on Software Engineering (ICSE), 2017.

[53] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu,
M. D. Ernst, D. Pang, and B. Keller, “Evaluating and im-
proving fault localization,” in Proc. of 39th International
Conference on Software Engineering (ICSE), 2017.

[54] A. Perez, R. Abreu, and M. D’Amorim, “Prevalence of
single-fault fixes and its impact on fault localization,”
in Proc. of IEEE International Conference on Software
Testing, Verification and Validation (ICST), 2017.

[55] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Ex-
periments on the effectiveness of dataflow- and control-
flow-based test adequacy criteria,” in Proc. of 16th Inter-
national Conference on Software Engineering, 1994.

[56] M. R. Rahman, M. Golagha, and A. Pretschner, “Pairika:
A failure diagnosis benchmark for C++ programs,” in
Proc. of 40th International Conference on Software En-
gineering: Companion, 2018.

[57] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou,
“Bugbench: Benchmarks for evaluating bug detection
tools,” in Workshop on the Evaluation of Software Defect
Detection Tools, 2005.

[58] R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. R.
Prasad, “Bugs.Jar: A large-scale, diverse dataset of real-
world Java bugs,” in Proc. of 15th International Confer-
ence on Mining Software Repositories (MSR), 2018.

[59] V. Dallmeier and T. Zimmermann, “Extraction of bug lo-
calization benchmarks from history,” in Proc. of Interna-
tional Conference on Automated Software Engineering.


	Introduction
	Studies on JavaScript analysis and testing
	Bug-related Studies for JavaScript
	Other Analysis and Testing Studies for JavaScript
	Findings

	BugsJS – the Proposed Benchmark
	Subject Systems Selection
	Bugs Collection
	Manual Patch Validation
	Sanity Checking through Dynamic Validation
	Patch Creation
	Final Benchmark Infrastructure and Implementation

	Analysis
	Code churn
	Patterns in Bugs and Fixes
	Bug Patterns
	Bug fix patterns

	JavaScript-related Bug Patterns

	Discussion
	Possible Use Cases
	Testing techniques
	Bug prediction using static source code analysis
	Bug localization
	Automated program repair

	Limitations
	Threats to validity

	Related work
	C, C++, and C# benchmarks
	Java benchmarks

	Conclusions

